

F/A-18 and EA-18G Moving Toward a Networked Environment

Statement A: Approved for public release; distribution is unlimited

F/A-18 Advanced Development June 29, 2005

Key Messages

- Navy has invested in F/A-18E/F and EA-18G aircraft physical architecture, with AESA radar, ATFLIR pod, MIDS/JTRS and DCS radios, ALR-67(v)3, JHMCS, SHARP, GPS-weapons, and the AEA sub-system.
- These aircraft possess the necessary building blocks that will allow Navy to operate, fight, and win on a Joint, networked battlefield.

Topics

- Naval Aviation in Transition.....
- F/A-18 and EA-18G Baseline Architecture
- F/A-18 Joint Interoperability Today
- Migration towards BSN via architecture and Joint Demo's and Experiments

Naval Aviation in Transition....

Mission Capability Focused: Speed, Agility, & Alignment

- We must be networked and interoperable with joint forces (MTM)
- We must possess the ability to move tactical war fighting information seamlessly on/off the aircraft and across a networked force
- We must manage at the interface

What's the future Machine-to-Machine architecture look like?

F/A-18 Integrated Architecture Roadmap

➤ Scalable, Portable, Flexible and Open Architecture
 ➤ Modular HOL(C++) Software Organization SEI CMM Level 5

EA-18G Architecture

Today's F/A-18 Interoperability Capabilities

Current F/A-18 INTEROPERABILITY = LINK-16 + VMF + CDL

Samples:

SHARP CDL (21 pods)
Wideband 274 Mbps

ARC-210/DCS Radio VMF (K-msgs, 16 kbps)

LINK-16 (J-msgs, 28.8 - 115.2 kbps)

VOICE (HQ II / SINCGARS / Cipher/ J-Voice)

IFF

Tactical Data / Voice Exchange [VHF & UHF]

LINK	Mil-Std
CDL	Mil-Std-7681990
L16	Mil-Std-6016
VMF	Mil-Std-188-220

Recce/SCAR

Reconnaissance-Armed

ï

anker

Super Hornet E/F: Block II Aircraft Delivery: October 2005

Fighter Sweep/Escort-ASuW/MAS-Mining-Standoff Attack(Reactive & Preplanned)

APG79-ATFLIR-ALR67-SHARP

Sensors

- AESA Standoff Radar
- ATFLIR
- •ALR-67

- Proven Pilot Interfaces
- Helmet Eyes Out of Cockpit
- Improved Front Seat / Back Seat configuration (ACS)
- Large 8x10 display (Aft)

Architecture

- •Flexible Design for Growth
- •HOL S/W Easily Upgradeable
- HSDB increases digital data speed and adds digital video
- •SW Dsgn Org SEI CMM LvI 5

Targeting & Strike

- Versatile Loadout
- Increased targeting accuracy with new sensors at standoff ranges in all weather

Direct Attack

(Reactive

Qo

Preplanned)

ī.

ഗ

EAD

Maneuverability

- Two engines
- •9 to 1 Thrust -Weight(engine only)
- •44,000 lbs of thrust

- New sensors integrated on-board and off-board inputs into a single air picture (MSI)
- Enhanced single integrated ground threat picture for aircrew (EMSI)

Fn/Connectivity

- Digital Data Communication with End User
 - Tasking
 - Imagery (EO/IR and SAR)
 - •BDA

- •ALR-67 (V3) IDECM Block III provides integrated Electronic Warfare Countermeasures
- •EA/EP provided by AESA

F/A-18E/F and F/A-18C/D Configured With Link 16 and DCS Radio

Demonstrated F/A-18 Experiment @ JEFX-04

Digital Close Air Support (Army Fort Dix Sep 04 Demonstration)

Distributed Targeting Reduces the Kill Chain Timeline SCAR Mission in MCO2

OV1

Recce/SCAR

Armed

Super Hornet E/F: Block – Future

Battlespace Network Capable

Fighter Sweep/Escort-ASuW/MAS-Mining-Standoff Attack(Reactive & Preplanned)

Sensors

- AESA Standoff Radar
- •ATFLIR
- •ALR-67
- ANAV Accurate Nav

- Proven Pilot Interfaces
- Helmet Eyes Out of Cockpit
- Improved Front Seat / Back Seat configuration (ACS)
- Large 8x10 display (Aft)

Architecture

- Open System Architecture
- •IP Interface to Network
- Wideband / High Speed
- HOL S/W Upgraded

- Fully Integrated Airborne -**Ground - Threat** Representation
- Cooperative Targeting
- Integrated Blue Force Tracking
- Combat ID
- Integrated w/ Offboard Sensors

Targeting & Strike

- Versatile Loadout
- Increased targeting accuracy with precision target/imagery geo-registration
- Moving Targets

- Digital Data Communication with End User
 - Wideband Network
 - Tasking
 - •C² Contributor
 - Precision Target/Imagery
 - BDA/Maintenance

Direct

Attack

Qo

S Ш

AD

Maneuverability

- Two engines
- •9 to 1 Thrust-Weight(engine only)
- •44.000 lbs of thrust

Survivability

- •ALR-67 (V3) IDECM provides integrated Electronic Warfare Countermeasures
- •EA/EP provided by AESA
- AESA integrated w/ IDECM

F/A-18E/F & EA-18G Architectural Considerations for BSN

- Software integration
 - Alternatives to accommodate exchange of IP-based information
 - Open systems computing environment
 - Separation of network services and applications from OFP in Advanced Mission Computer (AMC)
 - Bus architecture
 - Network portal issues between airborne network & platform Local Area Network (LAN)
 - High-speed data bus options
- Power and cooling requirements
- Space and weight
- RF architecture
 - Antenna impacts in & out of L-band
 - External power amplifier
 - Co-site interference (EMI/EMC)
- Software loading tools and mission planning systems impacts
- Identification of EA-18G unique requirements

Potential TACAIR Architecture F/A-18E/F and EA-18G "Smart Node"

F/A-18E/F, EA-18G "Smart Node" Example

What it Takes to Exploit an IP Network

Full Capability of a System is Only Realized When All Layers of the Architecture are Integrated for NCO

F/A-18F(F1) Advanced Technology Demonstrator

EMD Aircraft F/A-18F Cum 1 (F1)

- Onsite STL Oct 2001

Managed and Maintained by Boeing

5 yr Cooperative Agreement with NAVAIR

Demo/Experimentation, Technology Transition & Rapid Deployment Capability (RDC)

Link 16 and VMF Imagery with Digital CAS Demonstrated 4 Sept, 2003 St. Louis Area MIDS (Link 16) DCS (VMF) Based Upon DoD Approved Used Prototype VMF 'K' J16.0 Imagery M ge for Imagery Imagery Annotations Digital 9-Line F/A-18F1 Funneling situational awaren Link 16 14-51 sec FAC(G) with VMF 13-55 sec ACASS Operationally Useful Transmission Command and control (simulated in lab) Time Varies Due to Network, Compression & Image Size Network Loading Included Over Simulated 50 Tracks

Net-Centric: Capability Now . . . Focused on Growth

JEFX06 Architecture

(April 2006)

China Lake IBAR

Goals and Objectives

- -Target Data Package
- Own-ship Heartbeat / **Status Message**
- **Imagery with Annotations**
- **Blue Force Situational Awareness** (BFSA)
- **Streaming Video**
- Aircraft's "Ground Target
- Designation"
- Voice over IP (VoIP)
- **Common Grid Reference System** (CGRS) Message

JEFX06 Force List

F/A-22, F-15C, F-16, F-15E F-16C+, F-16C, F-15E(E1), F/A-18(F1), F-117, EA-6B, B-1/2/52, E-3B, TS-3, RC-135 PR-707, E-8, E-2C(x-Hawk) Predator, GH, BACN A/C, EC-130H, A/OA-10, HH-60 MC-130, AC-130, KC-130

F/A-18E/F and EA-18G Battle Space Networking Roadmap

MIDS JTRS JAN-TE WAVEFORM IPv6 Wide Band Networks (OV1)

Full Network Centric Operations and Warfare

Questions?

"We will adapt to the changing world around us by getting out in front of it, by leading change, and embracing the innovations and improvements needed to guarantee our future success....."

- CNO (CNO Guidance 2004)

Backup

Link 16 and VMF Imagery with Digital CAS Demonstrated 4 Sept, 2003 St. Louis Area

